Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 578
Filtrar
1.
PLoS Negl Trop Dis ; 17(1): e0011020, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634044

RESUMO

Extensive research has examined why some people have frequent Plasmodium falciparum malaria episodes in sub-Saharan Africa while others remain free of disease most of the time. In contrast, malaria risk heterogeneity remains little studied in regions where P. vivax is the dominant species. Are repeatedly infected people in vivax malaria settings such as the Amazon just unlucky? Here, we briefly review evidence that human genetic polymorphism and acquired immunity after repeated exposure to parasites can modulate the risk of P. vivax infection and disease in predictable ways. One-fifth of the hosts account for 80% or more of the community-wide vivax malaria burden and contribute disproportionally to onward transmission, representing a priority target of more intensive interventions to achieve malaria elimination. Importantly, high-risk individuals eventually develop clinical immunity, even in areas with very low or residual malaria transmission, and may constitute a large but silent parasite reservoir.


Assuntos
Malária Vivax , Humanos , Malária Vivax/genética , Malária Vivax/imunologia , Plasmodium vivax , Prevalência , Recidiva
2.
Parasitol Int ; 87: 102497, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34748969

RESUMO

Malaria elimination means cessation of parasite transmission. At present, the declining malaria incidence in many countries has made elimination a feasible goal. Transmission control has thus been placed at the center of the national malaria control programs. The efficient transmission of Plasmodium vivax from humans to mosquitoes is a key factor that helps perpetuate malaria in endemic areas. A better understanding of transmission is crucial to the success of elimination efforts. Biological delineation of the parasite transmission process is important for identifying and prioritizing new targets of intervention. Identification of the infectious parasite reservoir in the community is key to devising an effective elimination strategy. Here we describe the fundamental characteristics of P. vivax gametocytes - the dynamics of their production, longevity, and the relationship with the total parasitemia - as well as recent advances in the molecular understanding of parasite sexual development. In relation to malaria elimination, factors influencing the human infectivity and the current evidence for a role of asymptomatic carriers in transmission are presented.


Assuntos
Malária Vivax/transmissão , Plasmodium vivax/fisiologia , Animais , Anopheles/parasitologia , Feminino , Humanos , Malária Vivax/imunologia , Malária Vivax/parasitologia , Masculino , Mosquitos Vetores/parasitologia , Parasitemia/parasitologia , Parasitemia/transmissão
3.
PLoS One ; 16(11): e0258637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34727117

RESUMO

Peptide-based vaccines have demonstrated to be an important way to induce long-lived immune responses and, therefore, a promising strategy in the rational of vaccine development. As to malaria, among the classic vaccine targets, the Apical membrane antigen (AMA-1) was proven to have important B cell epitopes that can induce specific immune response and, hence, became key players for a vaccine approach. The peptides selection was carried out using a bioinformatic approach based on Hidden Markov Models profiles of known antigens and propensity scale methods based on hydrophilicity and secondary structure prediction. The antigenicity of the selected B-cell peptides was assessed by multiple serological assays using sera from acute P.vivax infected subjects. The synthetic peptides were recognized by 45.5%, 48.7% and 32.2% of infected subjects for peptides I, II and III respectively. Moreover, when synthetized together (tripeptide), the reactivity increases up to 62%, which is comparable to the reactivity found against the whole protein PvAMA-1 (57%). Furthermore, IgG reactivity against the tripeptide after depletion was reduced by 42%, indicating that these epitopes may be responsible for a considerable part of the protein immunogenicity. These results represent an excellent perspective regarding future chimeric vaccine constructions that may come to contemplate several targets with the potential to generate the robust and protective immune response that a vivax malaria vaccine needs to succeed.


Assuntos
Antígenos de Protozoários/imunologia , Epitopos de Linfócito B/imunologia , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Peptídeos/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Adulto , Sequência de Aminoácidos , Formação de Anticorpos/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Epitopos Imunodominantes/imunologia , Imunoglobulina G/imunologia , Malária Vivax/epidemiologia , Malária Vivax/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Estrutura Secundária de Proteína
4.
PLoS Negl Trop Dis ; 15(11): e0009886, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34727121

RESUMO

Homeostatic perturbation caused by infection fosters two major defense strategies, resistance and tolerance, which promote the host's survival. Resistance relates to the ability of the host to restrict the pathogen load. Tolerance minimizes collateral tissue damage without directly affecting pathogen fitness. These concepts have been explored mechanistically in murine models of malaria but only superficially in human disease. Indeed, individuals infected with Plasmodium vivax may present with asymptomatic malaria, only mild symptoms, or be severely ill. We and others have reported a diverse repertoire of immunopathological events that potentially underly susceptibility to disease severity in vivax malaria. Nevertheless, the combined epidemiologic, clinical, parasitological, and immunologic features associated with defining the disease outcomes are still not fully understood. In the present study, we perform an extensive outlining of cytokines and inflammatory proteins in plasma samples from a cohort of individuals from the Brazilian Amazon infected with P. vivax and presenting with asymptomatic (n = 108) or symptomatic (n = 134) disease (106 with mild presentation and 28 with severe malaria), as well as from uninfected endemic controls (n = 128) to elucidate these gaps further. We employ highly multidimensional Systems Immunology analyses using the molecular degree of perturbation to reveal nuances of a unique profile of systemic inflammation and imbalanced immune activation directly linked to disease severity as well as with other clinical and epidemiologic characteristics. Additionally, our findings reveal that the main factor associated with severe cases of P. vivax infection was the number of symptoms, despite of a lower global inflammatory perturbation and parasitemia. In these participants, the number of symptoms directly correlated with perturbation of markers of inflammation and tissue damage. On the other hand, the main factor associated with non-severe infections was the parasitemia values, that correlated only with perturbation of inflammatory markers, such as IL-4 and IL-1ß, with a relatively lower number of symptoms. These observations suggest that some persons present severe vivax regardless of pathogen burden and global inflammatory perturbation. Such patients are thus little tolerant to P. vivax infection and show higher susceptibility to disrupt homeostasis and consequently exhibit more clinical manifestations. Other persons are capable to tolerate higher parasitemia with lower inflammatory perturbation and fewer symptoms, developing non-severe malaria. The analytical approach presented here has capability to define in more details the determinants of disease tolerance in vivax malaria.


Assuntos
Malária Vivax/imunologia , Plasmodium vivax/fisiologia , Adulto , Brasil , Feminino , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Malária Vivax/genética , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Plasmodium vivax/genética , Estudos Retrospectivos , Índice de Gravidade de Doença , Adulto Jovem
5.
Eur J Med Res ; 26(1): 134, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823591

RESUMO

BACKGROUND: Circumsporozoite protein (CSP) has a central immune domain that includes short regions of repeating amino acid sequences. This immunodynamic region is an epitope of B cells that can elicit an immune response in human and laboratory animals. The aim of the present study was to express the recombinant PvCSP-VK210 antigen and evaluate it for assaying antibodies obtained during human P. vivax infection by Western blotting and indirect ELISA (enzyme-linked immunosorbent assay). METHOD: Genomic DNA of P. vivax was isolated from a blood sample of an Iranian person with vivax malaria, and by PCR, the fragment of the PvCSP-VK210 gene was amplified. The gene fragment was cut after gel purification by BamHI and HindIII enzymes and then cloned into pET28a expression vector. Finally, the recombinant pET28a was transformed into the E. coli BL21 (DE3) as the expression host. In order to produce His-tagged protein, the expression host was cultured in LB medium. The protein was purified by Ni-NTA columns and immobilized metal affinity chromatography, and after confirmation by Western blotting technique, was used as the antigen in the indirect ELISA test. RESULTS: The recombinant protein was expressed and purified as a 32-kDa protein. The sensitivity and specificity of the indirect ELISA test with the recombinant PvCSP-VK210 antigen were 61.42% and 97.14%, respectively, based on OD = 0.313. Between the results of the microscopic test and the indirect ELISA test with the recombinant PvCSP-VK210 antigen there was a Kappa coefficient of 0.586. The positive and negative predictive value and validity of the ELISA test with the recombinant PvCSP-VK210 antigen were 95.55%, 71.57%, 79.28%, respectively. CONCLUSION: The sensitivity of the indirect ELISA method with the recombinant PvCSP-VK210 antigen was 61.42%, which is the first report from Iran.


Assuntos
Anticorpos Antiprotozoários/imunologia , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Western Blotting , Ensaio de Imunoadsorção Enzimática , Interações Hospedeiro-Parasita/imunologia , Humanos , Irã (Geográfico) , Malária Vivax/parasitologia , Plasmodium vivax/genética , Plasmodium vivax/fisiologia , Proteínas de Protozoários/genética
6.
Front Immunol ; 12: 704653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675915

RESUMO

Malaria remains a major public health problem worldwide, and Plasmodium vivax is the most widely distributed malaria parasite. Naturally acquired binding inhibitory antibodies (BIAbs) to region II of the Duffy binding protein (DBPII), a P. vivax ligand that is critical for reticulocyte invasion, are associated with a reduced risk of clinical malaria. Owing to methodological issues in evaluating antibodies that inhibit the DBPII-DARC interaction, a limited number of studies have investigated DBPII BIAbs in P. vivax-exposed populations. Based on the assumption that individuals with a consistent BIAb response are characterized by strain-transcending immune responses, we hypothesized that detecting broadly reactive DBPII antibodies would indicate the presence of BIAb response. By taking advantage of an engineered DBPII immunogen targeting conserved DBPII neutralizing epitopes (DEKnull-2), we standardized a multiplex flow cytometry-based serological assay to detect broadly neutralizing IgG antibodies. For this study, a standard in vitro cytoadherence assay with COS-7 cells expressing DBPII was used to test for DBPII BIAb response in long-term P. vivax-exposed Amazonian individuals. Taken together, the results demonstrate that this DBPII-based multiplex assay facilitates identifying DBPII BIAb carriers. Of relevance, the ability of the multiplex assay to identify BIAb responders was highly accurate when the positivity for all antigens was considered. In conclusion, the standardized DBPII-based flow cytometric assay confirmed that DBPII-BIAb activity was associated with the breadth rather than the magnitude of anti-DBPII antibodies. Altogether, our results suggest that multiplex detection of broadly DBPII-reactive antibodies facilitates preliminary screening of BIAb responders.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários , Antígenos de Protozoários/imunologia , Citometria de Fluxo , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Anticorpos Antiprotozoários/imunologia , Humanos , Malária Vivax/diagnóstico
7.
Front Immunol ; 12: 634738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248932

RESUMO

P48/45 is a conserved gametocyte antigen involved in Plasmodium parasite fertilization. A recombinant Plasmodium vivax P48/45 (Pvs48/45) protein expressed in Escherichia coli (E. coli) was highly antigenic and immunogenic in experimental animals and elicited specific transmission-blocking (TB) antibodies in a previous pilot study. Here, a similar Pvs48/45 gene was expressed in Chinese Hamster Ovary (CHO) cells and we compared its immunoreactivity with the E. coli product. Specific antibody titers were determined using plasma from Colombian individuals (n=227) living in endemic areas where both P. vivax and P. falciparum are prevalent and from Guatemala (n=54) where P. vivax is highly prevalent. In Colombia, plasma seroprevalence to CHO-rPvs48/45 protein was 46.3%, while for E. coli-rPvs48/45 protein was 36.1% (p<0.001). In Guatemala, the sero prevalence was 24.1% and 14.8% (p<0.001), respectively. Reactivity index (RI) against both proteins showed an age-dependent increase. IgG2 was the predominant subclass and the antibody avidity index evaluated by ELISA ranged between 4-6 mol/L. Ex vivo P. vivax mosquito direct membrane feeding assays (DMFA) performed in presence of study plasmas, displayed significant parasite transmission-blocking (TB), however, there was no direct correlation between antibody titers and oocysts transmission reduction activity (%TRA). Nevertheless, DMFA with CHO rPvs48/45 affinity purified IgG showed a dose response; 90.2% TRA at 100 µg/mL and 71.8% inhibition at 10 µg/mL. In conclusion, the CHO-rPvs48/45 protein was more immunoreactive in most of the malaria endemic places studied, and CHO-rPvs48/45 specific IgG showed functional activity, supporting further testing of the protein vaccine potential.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Doenças Endêmicas , Escherichia coli/metabolismo , Imunoglobulina G/sangue , Malária Vivax/diagnóstico , Plasmodium vivax/imunologia , Testes Sorológicos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Especificidade de Anticorpos , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Células CHO , Criança , Colômbia/epidemiologia , Cricetulus , Escherichia coli/genética , Feminino , Guatemala/epidemiologia , Humanos , Malária Vivax/sangue , Malária Vivax/epidemiologia , Malária Vivax/imunologia , Masculino , Pessoa de Meia-Idade , Plasmodium vivax/patogenicidade , Valor Preditivo dos Testes , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Estudos Soroepidemiológicos , Adulto Jovem
8.
mBio ; 12(4): e0124721, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34311577

RESUMO

Monocytes play an important role in the host defense against Plasmodium vivax as the main source of inflammatory cytokines and mitochondrial reactive oxygen species (mROS). Here, we show that monocyte metabolism is altered during human P. vivax malaria, with mitochondria playing a major function in this switch. The process involves a reprograming in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. P. vivax infection results in dysregulated mitochondrial gene expression and in altered membrane potential leading to mROS increase rather than ATP production. When monocytes were incubated with P. vivax-infected reticulocytes, mitochondria colocalized with phagolysosomes containing parasites representing an important source mROS. Importantly, the mitochondrial enzyme superoxide dismutase 2 (SOD2) is simultaneously induced in monocytes from malaria patients. Taken together, the monocyte metabolic reprograming with an increased mROS production may contribute to protective responses against P. vivax while triggering immunomodulatory mechanisms to circumvent tissue damage. IMPORTANCE Plasmodium vivax is the most widely distributed causative agent of human malaria. To achieve parasite control, the human immune system develops a substantial inflammatory response that is also responsible for the symptoms of the disease. Among the cells involved in this response, monocytes play an important role. Here, we show that monocyte metabolism is altered during malaria, with its mitochondria playing a major function in this switch. This change involves a reprograming process in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. The resulting altered mitochondrial membrane potential leads to an increase in mitochondrial reactive oxygen species rather than ATP. These data suggest that agents that change metabolism should be investigated and used with caution during malaria.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/patologia , Monócitos/metabolismo , Monócitos/patologia , Plasmodium vivax/imunologia , Reticulócitos/parasitologia , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Idoso , Feminino , Expressão Gênica , Glicólise , Humanos , Malária Vivax/imunologia , Malária Vivax/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Monócitos/citologia , Monócitos/imunologia , Fagossomos/imunologia , Fagossomos/parasitologia , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Adulto Jovem
9.
Malar J ; 20(1): 246, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082763

RESUMO

BACKGROUND: Plasmodium vivax is the most prevalent malaria parasite in many countries. A better understanding of human immunity to this parasite can provide new insights for vaccine development. Plasmodium vivax Reticulocyte Binding Proteins (RBPs) are key parasite proteins that interact with human proteins during erythrocyte invasion and are targets of the human immune response. The aim of this study is to characterize the human antibody response to RBP2P1, the most recently described member of the RBP family. METHODS: The levels of total IgG and IgM against RBP2P1 were measured using plasmas from 68 P. vivax malaria patients and 525 villagers in a malarious village of western Thailand. The latter group comprises asymptomatic carriers and healthy uninfected individuals. Subsets of plasma samples were evaluated for anti-RBP2P1 IgG subtypes and complement-fixing activity. RESULTS: As age increased, it was found that the level of anti-RBP2P1 IgG increased while the level of IgM decreased. The main anti-RBP2P1 IgG subtypes were IgG1 and IgG3. The IgG3-seropositive rate was higher in asymptomatic carriers than in patients. The higher level of IgG3 was correlated with higher in vitro RBP2P1-mediated complement fixing activity. CONCLUSIONS: In natural infection, the primary IgG response to RBP2P1 was IgG1 and IgG3. The predominance of these cytophilic subtypes and the elevated level of IgG3 correlating with complement fixing activity, suggest a possible role of anti-RBP2P1 antibodies in immunity against P. vivax.


Assuntos
Imunidade Humoral , Malária Vivax/imunologia , Proteínas de Membrana/imunologia , Plasmodium vivax/fisiologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34128836

RESUMO

IFN-γ-driven responses to malaria have been shown to modulate the development and function of T follicular helper (TFH) cells and memory B cells (MBCs), with conflicting evidence of their involvement in the induction of antibody responses required to achieve clinical immunity and their association with disease outcomes. Using high-dimensional single-cell mass cytometry, we identified distinct populations of TH1-polarized CD4+ T cells and MBCs expressing the TH1-defining transcription factor T-bet, associated with either increased or reduced risk of Plasmodium vivax (P. vivax) malaria, demonstrating that inflammatory responses to malaria are not universally detrimental for infection. Furthermore, we found that, whereas class-switched but not IgM+ MBCs were associated with a reduced risk of symptomatic malaria, populations of TH1 cells with a stem central memory phenotype, TH17 cells, and T regulatory cells were associated with protection from asymptomatic infection, suggesting that activation of cell-mediated immunity might also be required to control persistent P. vivax infection with low parasite burden.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Malária Vivax/imunologia , Células B de Memória/imunologia , Infecção Persistente/imunologia , Plasmodium vivax/imunologia , Antimaláricos/uso terapêutico , Infecções Assintomáticas , Linfócitos T CD4-Positivos/metabolismo , Estudos Transversais , Voluntários Saudáveis , Humanos , Imunidade Celular , Imunofenotipagem/métodos , Indonésia , Malária Vivax/sangue , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Células B de Memória/metabolismo , Infecção Persistente/sangue , Infecção Persistente/parasitologia , Plasmodium vivax/isolamento & purificação
11.
Parasitol Res ; 120(5): 1789-1797, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33797613

RESUMO

Invasion of Plasmodium into the red blood cell involves the interactions of a substantial number of proteins, with red cell membrane proteins as the most involved throughout the process from entry to exit. The objective of this work was to identify proteins of the human erythrocyte membrane capable of generating an antigenic response to P. falciparum and P. vivax infection, with the goal of searching for new molecular targets of interest with an immunological origin to prevent Plasmodium infection. To identify these proteins, an immunoproteomic technique was carried out in four stages: protein separation (electrophoresis), detection of antigenic proteins (western blotting), identification of proteins of interest (mass spectrometry), and interpretation of the data (bioinformatic analysis). Four proteins were identified from extracts of membrane proteins from erythrocytes infected with P. falciparum: Spectrin, Ankyrin-1, Band 3 and band 4.2, and a single protein was identified from erythrocytes infected with P. vivax: Band 3. These results demonstrate that modifications in the red blood cell membrane during infection with P. falciparum and P. vivax can generate an immune response, altering proteins of great structural and functional importance.


Assuntos
Membrana Eritrocítica/imunologia , Malária Falciparum/imunologia , Malária Vivax/imunologia , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Adulto , Anquirinas/imunologia , Proteínas do Citoesqueleto , Feminino , Humanos , Masculino , Proteínas de Membrana/análise , Pessoa de Meia-Idade
12.
PLoS Negl Trop Dis ; 15(4): e0009390, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33914739

RESUMO

BACKGROUND: Malaria in Brazil represents one of the highest percentages of Latin America cases, where approximately 84% of infections are attributed to Plasmodium (P.) vivax. Despite the high incidence, many aspects of gestational malaria resulting from P. vivax infections remain poorly studied. As such, we aimed to evaluate the consequences of P. vivax infections during gestation on the health of mothers and their neonates in an endemic area of the Amazon. METHODS AND FINDINGS: We have conducted an observational cohort study in Brazilian Amazon between January 2013 and April 2015. 600 pregnant women were enrolled and followed until delivery. After applying exclusion criteria, 329 mother-child pairs were included in the analysis. Clinical data regarding maternal infection, newborn's anthropometric measures, placental histopathological characteristics, and angiogenic and inflammatory factors were evaluated. The presence of plasma IgG against the P. vivax (Pv) MSP119 protein was used as marker of exposure and possible associations with pregnancy outcomes were analyzed. Multivariate logistic regression analysis revealed that P. vivax infections during the first trimester of pregnancy are associated with adverse gestational outcomes such as premature birth (adjusted odds ratio [aOR] 8.12, 95% confidence interval [95%CI] 2.69-24.54, p < 0.0001) and reduced head circumference (aOR 3.58, 95%CI 1.29-9.97, p = 0.01). Histopathology analysis showed marked differences between placentas from P. vivax-infected and non-infected pregnant women, especially regarding placental monocytes infiltrate. Placental levels of vasomodulatory factors such as angiopoietin-2 (ANG-2) and complement proteins such as C5a were also altered at delivery. Plasma levels of anti-PvMSP119 IgG in infected pregnant women were shown to be a reliable exposure marker; yet, with no association with improved pregnancy outcomes. CONCLUSIONS: This study indicates that P. vivax malaria during the first trimester of pregnancy represents a higher likelihood of subsequent poor pregnancy outcomes associated with marked placental histologic modification and angiogenic/inflammatory imbalance. Additionally, our findings support the idea that antibodies against PvMSP119 are not protective against poor pregnancy outcomes induced by P. vivax infections.


Assuntos
Malária Vivax/patologia , Placenta/patologia , Plasmodium vivax/patogenicidade , Complicações Infecciosas na Gravidez/patologia , Resultado da Gravidez , Adolescente , Adulto , Antígenos de Protozoários/imunologia , Brasil , Feminino , Humanos , Imunoglobulina G/sangue , Recém-Nascido , Modelos Logísticos , Malária Falciparum/epidemiologia , Malária Vivax/diagnóstico , Malária Vivax/imunologia , Masculino , Análise Multivariada , Plasmodium vivax/imunologia , Gravidez , Complicações Infecciosas na Gravidez/diagnóstico , Primeiro Trimestre da Gravidez , Nascimento Prematuro/etiologia , Estudos Prospectivos , Adulto Jovem
13.
Nat Commun ; 12(1): 1538, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750786

RESUMO

Plasmodium vivax preferentially invades reticulocytes and recognition of these cells is mediated by P. vivax Reticulocyte Binding Protein 2b (PvRBP2b) binding to human Transferrin receptor 1 (TfR1) and Transferrin (Tf). Longitudinal cohort studies in Papua New Guinea, Thailand and Brazil show that PvRBP2b antibodies are correlated with protection against P. vivax infection and disease. Here, we isolate and characterize anti-PvRBP2b human monoclonal antibodies from two individuals in Cambodia with natural P. vivax infection. These antibodies bind with high affinities and map to different regions of PvRBP2b. Several human antibodies block PvRBP2b binding to reticulocytes and inhibit complex formation with human TfR1-Tf. We describe different structural mechanisms for functional inhibition, including either steric hindrance with TfR1-Tf or the reticulocyte membrane. These results show that naturally acquired human antibodies against PvRBP2b can inhibit its function which is important for P. vivax invasion.


Assuntos
Anticorpos Bloqueadores , Anticorpos Monoclonais/imunologia , Proteínas de Membrana/metabolismo , Plasmodium vivax/metabolismo , Proteínas de Protozoários/metabolismo , Reticulócitos/metabolismo , Anticorpos Antiprotozoários/imunologia , Antígenos CD , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Camboja , Cristalografia por Raios X , Humanos , Estudos Longitudinais , Malária Vivax/imunologia , Malária Vivax/parasitologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Plasmodium vivax/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Receptores da Transferrina
14.
PLoS Negl Trop Dis ; 15(2): e0009165, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33591976

RESUMO

BACKGROUND: Antibody responses as serological markers of Plasmodium vivax infection have been shown to correlate with exposure, but little is known about the other factors that affect antibody responses in naturally infected people from endemic settings. To address this question, we studied IgG responses to novel serological exposure markers (SEMs) of P. vivax in three settings with different transmission intensity. METHODOLOGY: We validated a panel of 34 SEMs in a Peruvian cohort with up to three years' longitudinal follow-up using a multiplex platform and compared results to data from cohorts in Thailand and Brazil. Linear regression models were used to characterize the association between antibody responses and age, the number of detected blood-stage infections during follow-up, and time since previous infection. Receiver Operating Characteristic (ROC) analysis was used to test the performance of SEMs to identify P. vivax infections in the previous 9 months. PRINCIPAL FINDINGS: Antibody titers were associated with age, the number of blood-stage infections, and time since previous P. vivax infection in all three study sites. The association between antibody titers and time since previous P. vivax infection was stronger in the low transmission settings of Thailand and Brazil compared to the higher transmission setting in Peru. Of the SEMs tested, antibody responses to RBP2b had the highest performance for classifying recent exposure in all sites, with area under the ROC curve (AUC) = 0.83 in Thailand, AUC = 0.79 in Brazil, and AUC = 0.68 in Peru. CONCLUSIONS: In low transmission settings, P. vivax SEMs can accurately identify individuals with recent blood-stage infections. In higher transmission settings, the accuracy of this approach diminishes substantially. We recommend using P. vivax SEMs in low transmission settings pursuing malaria elimination, but they are likely to be less effective in high transmission settings focused on malaria control.


Assuntos
Biomarcadores/sangue , Malária Vivax/diagnóstico , Testes Sorológicos/métodos , Formação de Anticorpos , Brasil/epidemiologia , Estudos de Coortes , Humanos , Imunoglobulina G/sangue , Estudos Longitudinais , Malária Vivax/sangue , Malária Vivax/epidemiologia , Malária Vivax/imunologia , Peru/epidemiologia , Plasmodium vivax , Prevalência , Testes Sorológicos/normas , Tailândia/epidemiologia
15.
Sci Rep ; 11(1): 3201, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547377

RESUMO

Merozoite surface protein 9 (MSP9) constitutes a ligand complex involved in erythrocyte invasion by malarial merozoites and is a promising vaccine target. Plasmodium vivax MSP9 (PvMSP9) is immunogenic upon natural malaria exposure. To address whether sequence diversity in PvMSP9 among field isolates could affect natural antibody responses, the recombinant proteins representing two variants each for the N- and the C-terminal domains of PvMSP-9 were used as antigens to assess antibody reactivity among 246 P. vivax-infected patients' sera from Tak and Ubon Ratchathani Provinces in Thailand. Results revealed that the seropositivity rates of IgG antibodies to the N-terminal antigens were higher than those to the C-terminal antigens (87.80% vs. 67.48%). Most seropositive sera were reactive to both variants, suggesting the presence of common epitopes. Variant-specific antibodies to the N- and the C-terminal antigens were detected in 15.85% and 16.70% of serum samples, respectively. These seropositivity rates were not significant difference between provinces. The seropositivity rates, levels and avidity of anti-PvMSP9 antibodies exhibited positive trends towards increasing malaria episodes. The IgG isotype responses to the N- and the C-terminal antigens were mainly IgG1 and IgG3. The profile of IgG responses may have implications for development of PvMSP9-based vaccine.


Assuntos
Imunoglobulina G/imunologia , Malária Vivax/imunologia , Proteínas de Membrana/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Humanos , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Plasmodium vivax/química , Plasmodium vivax/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Tailândia/epidemiologia
16.
Expert Rev Vaccines ; 20(2): 185-198, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33478283

RESUMO

INTRODUCTION: Transmission-blocking vaccines (TBV) prevent community spread of malaria by targeting mosquito sexual stage parasites, a life-cycle bottleneck, and will be used in elimination programs. TBV rely on herd immunity to reduce mosquito infections and thereby new infections in both vaccine recipients and non-recipients, but do not provide protection once an individual receives an infectious mosquito bite which complicates clinical development. AREAS COVERED: Here, we describe the concept and biology behind TBV, and we provide an update on clinical development of the leading vaccine candidate antigens. Search terms 'malaria vaccine,' 'sexual stages,' 'transmission blocking vaccine,' 'VIMT' and 'SSM-VIMT' were used for PubMed queries to identify relevant literature. EXPERT OPINION: Candidates targeting P. falciparum zygote surface antigen Pfs25, and its P. vivax orthologue Pvs25, induced functional activity in humans that reduced mosquito infection in surrogate assays, but require increased durability to be useful in the field. Candidates targeting gamete surface antigens Pfs230 and Pfs48/45, respectively, are in or nearing clinical trials. Nanoparticle platforms and adjuvants are being explored to enhance immunogenicity. Efficacy trials require special considerations, such as cluster-randomized designs to measure herd immunity that reduces human and mosquito infection rates, while addressing human and mosquito movements as confounding factors.


Assuntos
Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Malária Vivax/prevenção & controle , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Superfície/imunologia , Humanos , Imunidade Coletiva/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Malária Vivax/imunologia , Malária Vivax/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/imunologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia
17.
Infect Genet Evol ; 89: 104710, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421653

RESUMO

Plasmodium vivax is the most widespread malaria species parasitizing humans outside Africa, with approximately 100 million cases reported per year. Most human cases of P. vivax are asymptomatic with low parasitemia, making active case detection-based elimination programme challenging and less effective. Despite the widespread distribution of P. vivax, no effective vaccines are currently available. Transmission blocking vaccines have recently emerged as potential vaccine candidates to reduce transmission rates to below the essential levels required for the maintenance of the parasite life cycle. Here, we demonstrated that P. vivax was the predominant species found in a malaria-endemic area, although P. vivax/P. falciparum co-infections were also common. Through genomic sequence analysis and neighbor-joining algorithms, we demonstrated limited genetic heterogeneity in the P. vivax transmission-blocking vaccine candidate Pvs48/45 among clinical isolates of P. vivax. Restricted genetic polymorphism occurred at both nucleotide and amino acid levels. The most frequent mutation was A â†’ G at nucleotide position 77 (46.7%), whereas the least frequent was C â†’ T at nucleotide position 1230 (3.3%). The occurrence of single nucleotide polymorphisms (SNPs) distribution at 6/8 positions (75%) led to changes in amino acid sequences in the Pvs48/45 loci, whereas 2/8 (25%) of SNPs resulted in no amino acid sequence variations. Consistently, the nucleotide diversity in the Pvs48/45 locus among the P. vivax population studied was extremely low (π = 0.000525). Changes in amino acid sequences in the Pvs48/45 protein did not result in substantial conformational modifications in the tertiary structures of these proteins. Unveiling the population genetic structure and genetic heterogeneity of vaccine target antigens are necessary for rational design of transmission-blocking antibody vaccines and to monitor the vaccine efficacy in clinical trials in endemic areas for malaria.


Assuntos
Heterogeneidade Genética , Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/genética , Sequência de Aminoácidos , Animais , Haplótipos , Malária Vivax/imunologia , Malária Vivax/transmissão
18.
Expert Rev Vaccines ; 20(2): 97-112, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33481638

RESUMO

INTRODUCTION: Plasmodium vivax causes significant public health problems in endemic regions. A vaccine to prevent disease is critical, considering the rapid spread of drug-resistant parasite strains, and the development of hypnozoites in the liver with potential for relapse. A minimally effective vaccine should prevent disease and transmission while an ideal vaccine provides sterile immunity. AREAS COVERED: Despite decades of research, the complex life cycle, technical challenges and a lack of funding have hampered progress of P. vivax vaccine development. Here, we review the progress of potential P. vivax vaccine candidates from different stages of the parasite life cycle. We also highlight the challenges and important strategies for rational vaccine design. These factors can significantly increase immune effector mechanisms and improve the protective efficacy of these candidates in clinical trials to generate sustained protection over longer periods of time. EXPERT OPINION: A vaccine that presents functionally-conserved epitopes from multiple antigens from various stages of the parasite life cycle is key to induce broadly neutralizing strain-transcending protective immunity to effectively disrupt parasite development and transmission.


Assuntos
Vacinas Antimaláricas/administração & dosagem , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Animais , Antígenos de Protozoários/imunologia , Resistência a Medicamentos , Humanos , Fígado/parasitologia , Vacinas Antimaláricas/imunologia , Malária Vivax/imunologia , Malária Vivax/transmissão , Plasmodium vivax/parasitologia , Recidiva , Fatores de Tempo
19.
Bull Math Biol ; 83(1): 6, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387082

RESUMO

Malaria is a mosquito-borne disease that, despite intensive control and mitigation initiatives, continues to pose an enormous public health burden. Plasmodium vivax is one of the principal causes of malaria in humans. Antibodies, which play a fundamental role in the host response to P. vivax, are acquired through exposure to the parasite. Here, we introduce a stochastic, within-host model of antibody responses to P. vivax for an individual in a general transmission setting. We begin by developing an epidemiological framework accounting for P. vivax infections resulting from new mosquito bites (primary infections), as well as the activation of dormant-liver stages known as hypnozoites (relapses). By constructing an infinite server queue, we obtain analytic results for the distribution of relapses in a general transmission setting. We then consider a simple model of antibody kinetics, whereby antibodies are boosted with each infection, but are subject to decay over time. By embedding this model for antibody kinetics in the epidemiological framework using a generalised shot noise process, we derive analytic expressions governing the distribution of antibody levels for a single individual in a general transmission setting. Our work provides a means to explore exposure-dependent antibody dynamics for P. vivax, with the potential to address key questions in the context of serological surveillance and acquired immunity.


Assuntos
Anticorpos Antiprotozoários , Malária Vivax , Modelos Biológicos , Anticorpos Antiprotozoários/sangue , Humanos , Malária Vivax/epidemiologia , Malária Vivax/imunologia , Malária Vivax/transmissão
20.
Infect Immun ; 89(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33199351

RESUMO

Research on erythrocytic Plasmodium vivax merozoite antigens is critical for identifying potential vaccine candidates in reducing P. vivax disease. However, many P. vivax studies are constrained by its inability to undergo long-term culture in vitro Conserved across all Plasmodium spp., merozoite surface proteins are essential for invasion into erythrocytes and highly expressed on erythrocytic merozoites, thus making it an ideal vaccine candidate. In clinical trials, the P. vivax merozoite surface protein 1 (PvMSP1-19) vaccine candidate alone has shown to have limited immunogenicity in patients; hence, we incorporate the highly conserved and immunogenic C terminus of both P. vivax merozoite surface protein 8 (PvMSP8) and PvMSP1-19 to develop a multicomponent chimeric protein rPvMSP8+1 for immunization of mice. The resulted chimeric rPvMSP8+1 antibody was shown to recognize native protein MSP8 and MSP1-19 of mature P. vivax schizonts. In the immunized mice, an elevated antibody response was observed in the rPvMSP8+1-immunized group compared to that immunized with single-antigen components. In addition, we examined the growth inhibition of these antibodies against Plasmodium cynomolgi (Berok strain) parasites, which is phylogenetically close to P. vivax and sustains long-term culture in vitro Similarly, the chimeric anti-rPvMSP8+1 antibodies recognize P. cynomolgi MSP8 and MSP1-19 on mature schizonts and showed strong inhibition in vitro via growth inhibition assay. This study provides support for a new multiantigen-based paradigm rPvMSP8+1 to explore potential chimeric vaccine candidates against P. vivax malaria using sister species P. cynomolgi.


Assuntos
Anticorpos Antiprotozoários/imunologia , Malária Vivax/genética , Malária Vivax/imunologia , Proteína 1 de Superfície de Merozoito/genética , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium vivax/genética , Plasmodium vivax/imunologia , Virulência/imunologia , Animais , Anticorpos Antiprotozoários/genética , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Eritrócitos/imunologia , Regulação da Expressão Gênica , Humanos , Camundongos , Modelos Animais , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...